4.4.4 Transformation of Velocities (Addition of Velocities)

Suppose, relative to a frame S, a particle has a velocity

$$
\begin{equation*}
\mathbf{u}=u_{x} \mathbf{i}+u_{y} \mathbf{j}+u_{z} \mathbf{k} \tag{4.51}
\end{equation*}
$$

where $u_{x}=d x / d t$ etc. What we require is the velocity of this particle as measured in the frame of reference S^{\prime} moving with a velocity v_{x} relative to S. If the particle has coordinate x at time t in S, then the particle will have coordinate x^{\prime} at time t^{\prime} in S^{\prime} where

$$
\begin{equation*}
x=\gamma\left(0 x^{\prime}+v_{x} t^{\prime}\right) \text { and } t=\gamma\left(t^{\prime}+v_{x} x^{\prime} / c^{2}\right) \tag{4.52}
\end{equation*}
$$

If the particle is displaced to a new position $x+d x$ at time $t+d t$ in S, then in S^{\prime} it will be at the position $x^{\prime}+d x^{\prime}$ at time $t^{\prime}+d t^{\prime}$ where

$$
\begin{aligned}
& x+d x=\gamma\left(x^{\prime}+d x^{\prime}+v_{x}\left(t^{\prime}+d t^{\prime}\right)\right) \\
& \left.t+d t=\gamma\left(t^{\prime}+d t^{\prime}+v_{x}\left(x^{\prime}+d x^{\prime}\right) / c^{2}\right)\right)
\end{aligned}
$$

and hence

$$
\begin{aligned}
& d x=\gamma\left(d x^{\prime}+v_{x} d t^{\prime}\right) \\
& d t=\gamma\left(d t^{\prime}+v_{x} d x^{\prime} / c^{2}\right)
\end{aligned}
$$

so that

$$
\begin{align*}
& u_{x}=\frac{d x}{d t}=\frac{d x^{\prime}+v_{x} d t^{\prime}}{d t^{\prime}+v_{x} d x^{\prime} / c^{2}} \\
&=\frac{\frac{d}{d}}{d r^{\prime}}+v_{x} \\
& 1+\frac{v^{2}}{2} \frac{d x^{\prime}}{d r^{\prime}}
\end{aligned} \quad \begin{aligned}
& u_{x}^{\prime}+v_{x} \tag{4.53}\\
& 1+v_{x} u_{x}^{\prime} / c^{2}
\end{align*}
$$

where $u_{x}^{\prime}=d x^{\prime} / d t^{\prime}$ is the X velocity of the particle in the S^{\prime} frame of reference. Similarly, using $y=y^{\prime}$ and $z=z^{\prime}$ we find that

$$
\begin{align*}
& u_{y}=\frac{u_{y}^{\prime}}{\gamma\left(1+v_{x} u_{x}^{\prime} / c^{2}\right)} \tag{4.54}\\
& u_{z}=\frac{u_{z}^{\prime}}{\gamma\left(1+v_{x} u_{x}^{\prime} / c^{2}\right)} . \tag{4.55}
\end{align*}
$$

The inverse transformation follows by replacing $v_{x} \rightarrow-v_{x}$ interchanging the primed and unprimed variables. The result is

$$
\left.\begin{array}{l}
u_{x}^{\prime}=\frac{u_{x}-v_{x}}{1-v_{x} u_{x} / c^{2}} \tag{4.56}\\
u_{y}^{\prime}=\frac{u_{y}}{\gamma\left(1-v_{x} u_{x} / c^{2}\right)} \\
u_{z}^{\prime}=\frac{u_{z}}{\gamma\left(1-v_{x} u_{x} / c^{2}\right)}
\end{array}\right\}
$$

In particular, if $u_{x}=c$ and $u_{y}=u_{z}=0$, we find that

$$
\begin{equation*}
u_{x}^{\prime}=\frac{c-v_{x}}{1-v_{x} / c}=c \tag{4.57}
\end{equation*}
$$

i.e., if the particle has the speed c in S, it has the same speed c in S^{\prime}. This is just a restatement of the fact that if a particle (or light) has a speed c in one frame of reference, then it has the same speed c in all frames of reference.

Now consider the case in which the particle is moving with a speed that is less that c, i.e. suppose $u_{y}=u_{z}=0$ and $\left|u_{x}\right|<c$. We can rewrite Eq. (4.56) in the form

$$
\begin{align*}
u_{x}^{\prime}-c & =\frac{u_{x}-c}{1-u_{x} v_{x} / c^{2}}-c \\
& =\frac{\left(c+v_{x}\right)\left(c-v_{x}\right)}{c\left(1-v_{x} u_{x} / c^{2}\right)} . \tag{4.58}
\end{align*}
$$

Now, if S^{\prime} is moving relative to S with a speed less than c, i.e. $\left|v_{x}\right|<c$, then along with $\left|u_{x}\right|<c$ it is not difficult to show that the right hand side of Eq. (4.58) is always negative i.e.

$$
\begin{equation*}
u_{x}^{\prime}-c<0 \text { if }\left|u_{x}\right|<c,\left|v_{x}\right|<c \tag{4.59}
\end{equation*}
$$

from which follows $u_{x}^{\prime}<c$.
Similarly, by writing

$$
\begin{align*}
u_{x}^{\prime}+c & =\frac{u_{x}-v_{x}}{1-u_{x} v_{x} / c^{2}}+c \\
& =\frac{\left(c+u_{x}\right)\left(c-v_{x}\right)}{c\left(1-v_{x} u_{x} / c^{2}\right)} \tag{4.60}
\end{align*}
$$

we find that the right hand side of Eq. (4.60) is always positive provided $\left|u_{x}\right|<c$ and $\left|v_{x}\right|<c$ i.e.

$$
\begin{equation*}
u_{x}^{\prime}+c>0 \text { if }\left|u_{x}\right|<c,\left|v_{x}\right|<c \tag{4.61}
\end{equation*}
$$

from which follows $u_{x}^{\prime}>-c$. Putting together Eq. (4.59) and Eq. (4.61) we find that

$$
\begin{equation*}
\left|u_{x}^{\prime}\right|<c \text { if }\left|u_{x}\right|<c \text { and }\left|v_{x}\right|<c . \tag{4.62}
\end{equation*}
$$

What this result is telling us is that if a particle has a speed less than c in one frame of reference, then its speed is always less than c in any other frame of reference, provided this other frame of reference is moving at a speed less than c. As an example, consider two objects A and B approaching each other, A at a velocity $u_{x}=0.99 c$ relative to a frame of reference S, and B stationary in a frame of reference S^{\prime} which is moving with a velocity $v_{x}=-0.99 c$ relative to S.

